Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 80(7): 075111, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19655985

RESUMO

In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Microtecnologia/instrumentação , Arsenicais , Simulação por Computador , Campos Eletromagnéticos , Desenho de Equipamento , Gálio , Micro-Ondas , Temperatura
2.
Nanotechnology ; 20(34): 345301, 2009 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-19652274

RESUMO

Here we describe a lithography scheme based on the local anodic oxidation of germanium film by a scanning atomic force microscope in a humidity-controlled atmosphere. The oxidation kinetics of the Ge film were investigated by a tapping mode, in which a pulsed bias voltage was synchronized and applied with the resonance frequency of the cantilever, and by a contact mode, in which a continuous voltage was applied. In the tapping mode we clearly identified two regimes of oxidation as a function of the applied voltage: the trench width increased linearly during the vertical growth and increased exponentially during the lateral growth. Both regimes of growth were interpreted taking into consideration the Cabrera-Mott mechanism of oxidation applied to the oxide/Ge interface. We also show the feasibility of the bottom-up fabrication process presented in this work by showing a Cu nanowire fabricated on top of a silicon substrate.

3.
Phys Rev Lett ; 100(22): 226101, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18643432

RESUMO

An open (closed) system, in which matter is (not) exchanged through surface diffusion, was realized via growth kinetics. Epitaxially grown Si-Ge:Si (001) islands were annealed in different environments affecting the diffusivity of Si adatoms selectively. The evolution of the driving forces for intermixing while approaching the equilibrium was inferred from Synchrotron x-ray measurements of composition and strain. For the open system, intermixing due to the Si inflow from the wetting layer (reservoir) caused a decrease in the Ge content, leading to a lowering of the elastic energy and an increase in the mixing entropy. In contrast, for the closed system, while keeping the average Ge composition constant, atom rearrangement within the islands led to an increase in both elastic and entropic contributions. The Gibbs free energy decreased in both cases, despite the different evolution paths for the composition profiles.

4.
Phys Rev Lett ; 98(16): 165901, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17501431

RESUMO

The different mechanisms involved in the alloying of epitaxial nanocrystals are reported in this Letter. Intermixing during growth, surface diffusion, and intraisland diffusion were investigated by varying the growth conditions and annealing environments during chemical vapor deposition. The relative importance of each mechanism was evaluated in determining a particular composition profile for dome-shaped Ge:Si (001) islands. For samples grown at a faster rate, intermixing during growth was reduced. Si surface diffusion dominates during H2 annealing, whereas Ge surface diffusion and intraisland diffusion prevail during annealing in a PH3 environment.

5.
Phys Rev Lett ; 97(23): 236402, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17280218

RESUMO

Understanding the electronic structure of semiconductor nanostructures is not complete without a detailed description of their corresponding spin-related properties. Here we explore the response of the shell structure of InAs self-assembled quantum dots to magnetic fields oriented in several directions, allowing mapping of the g-tensor modulus for the s and p shells. We find that the g tensors for the s and p shells exhibit a very different behavior. The s state, being more localized, probes the confinement potential details by sweeping the magnetic-field orientation from the growth direction towards the in-plane direction. For the p state, the g-tensor modulus is closer to that of the surrounding GaAs, consistent with a larger delocalization. In addition to the assessment of the g tensor, these results reveal further details of the confining potentials of self-assembled quantum dots that have not yet been probed.

6.
Phys Rev Lett ; 93(4): 047403, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15323793

RESUMO

A polarized Raman study of nanographite ribbons on a highly oriented pyrolytic graphite substrate is reported. The Raman peak of the nanographite ribbons exhibits an intensity dependence on the light polarization direction relative to the nanographite ribbon axis. This result is due to the quantum confinement of the electrons in the 1D band structure of the nanographite ribbons, combined with the anisotropy of the light absorption in 2D graphite, in agreement with theoretical predictions.

7.
Phys Rev Lett ; 92(12): 126402, 2004 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-15089692

RESUMO

The Aharonov-Bohm effect is commonly believed to be a typical feature of the motion of a charged particle interacting with the electromagnetic vector potential. Here we present a magnetophotoluminescence study of type-II InP/GaAs self-assembled quantum dots, revealing the Aharonov-Bohm-type oscillations for neutral excitons when the hole ground state changes its angular momentum from l(h)=0 to l(h)=1, 2, and 3. The hole-ring parameters derived from a simple model are in excellent agreement with the structural parameters for this system.

8.
Phys Rev Lett ; 91(17): 176101, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-14611360

RESUMO

Three-dimensional composition maps of nominally pure Ge domes grown on Si(001) at 600 degrees C were obtained from grazing incidence anomalous x-ray scattering data at the Ge K edge. The data were analyzed in terms of a stack of layers with laterally varying concentration. The results demonstrated that the domes contained a Si-rich core covered by a Ge-rich shell and were independently supported by selective etch experiments. The composition profile resulted from substrate Si alloying into the Ge during growth to partially relax the stress in and under the domes.

9.
Phys Rev Lett ; 90(14): 146101, 2003 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-12731931

RESUMO

We present a nanostructure diagram for use in designing heteroepitaxial systems of quantum dots. The nanostructure diagram is computed using a new equilibrium statistical physics model and predicts the island size and shape distributions for a range of combinations of growth temperature and amount of deposited material. The model is applied to Ge on Si(001), the archetype for bimodal island growth, and the results compare well with data from atomic force microscopy of Ge/Si islands grown by chemical vapor deposition.

10.
Annu Rev Phys Chem ; 51: 527-51, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11031292

RESUMO

The growth and evolution of strained epitaxial Ge on a Si(001) surface provides a rich system for exploring the behavior of strongly interacting nanocrystals. In the temperature regime above 500 degrees C, there are two different (metastable) shapes of defect-free nanocrystals, termed pyramids and domes, that dominate the system depending on the temperature of the substrate during growth and the amount of Ge deposited. In contrast to the usual case considered in nucleation theory, the relaxation of the strain energy at the surface of the nanocrystals makes those surfaces stabilizing, i.e. the surface contribution to the free energy of the Ge nanocrystals is negative. Given that the edges of the nanocrystals are destabilizing (positive free energy), the interaction of the surfaces and edges of the nanocrystals in an ensemble renders an internal free energy for the system that has a local minimum with respect to the size (volume) of the nanocrystal. At finite temperatures, this free energy yields a size distribution with a characteristic centroid, width, and skewness for each nanocrystal shape. The smaller pyramids transform into domes when they grow to the point where they can surmount a kinetic energy barrier between the two structures. However, the Ge nanocrystals also effectively repel one another strongly via the strain fields that are produced in the Si substrate. This repulsive interaction makes the ensemble of Ge nanocrystals a highly nonideal thermodynamic system and, in turn, makes the free energies of the nanocrystals a function of their number density, or equivalently a function of the amount of Ge deposited. The interplay of the stabilizing effect of the nanocrystal surfaces and the destabilizing influence of their repulsive interactions yields a complex behavior for the nanocrystal-size distributions that can nonetheless be modeled using simple thermodynamic expressions.

11.
Science ; 279(5349): 353-5, 1998 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-9430580

RESUMO

Chemical vapor deposition of germanium onto the silicon (001) surface at atmospheric pressure and 600 degrees Celsius has previously been shown to produce distinct families of smaller (up to 6 nanometers high) and larger (all approximately 15 nanometers high) nanocrystals. Under ultrahigh-vacuum conditions, physical vapor deposition at approximately the same substrate temperature and growth rate produced a similar bimodal size distribution. In situ scanning tunneling microscopy revealed that the smaller square-based pyramids transform abruptly during growth to significantly larger multifaceted domes, and that few structures with intermediate size and shape remain. Both nanocrystal shapes have size-dependent energy minima that result from the interplay between strain relaxation at the facets and stress concentration at the edges. A thermodynamic model similar to a phase transition accounts for this abrupt morphology change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...